The synthesis and characterization of σ-bonded gold carbaborane compounds: closo-carbaboranes as good σ-donor ligands

Bruce D. Reid and Alan J. Welch
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3J (UK)
(Received April 7, 1992)

Abstract

A series of σ-bonded phosphine and arsine gold carbaborane compounds, 1-R'-2-ER ${ }_{3}$ Au-1,2-closo$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\left(\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OCH}_{3} \text { or } \mathrm{Ph}, \mathrm{ER}_{3}=\mathrm{PPh}_{3}, \mathrm{P}(o-t o l)\right)_{3}, \mathrm{PCy}_{3}, \mathrm{PEt}_{3}$ or $\left.\mathrm{AsPh}_{3}\right)$ have been prepared by reaction between $\mathrm{ER}_{3} \mathrm{AuCl}$ and $\mathrm{Li}\left[1-\mathrm{R}^{\prime}-1,2\right.$-closo- $\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right]$ in $\mathrm{Et}_{2} \mathrm{O}$. Consideration of their ${ }^{11} \mathrm{~B}$ NMR and (where appropriate) ${ }^{31} P$ NMR chemical shifts implies that the closo-carbaborane ligands function as efficient electron donating groups. Comparison of the $\mathrm{Au}-\mathrm{C}$ distance in $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-2$ AsPh ${ }_{3} \mathrm{Au}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (1e) and $\mathrm{AsPh}_{3} \mathrm{AuCH}_{3}$ (3) suggests that the gold-carbon bond in the former is stronger, and this is supported by analysis of the results of molecular orbital calculations at the extended Hückel level on model compounds. closo-Carbaboranes bonded to metal atoms via a M-C bond are thereby shown to be good σ-donor ligands.

Introduction

In comparison to the profusion of transition metal closo-carbametallaboranes in which the metal atom is η-bonded to a (nido) carbaborane ligand (recently termed [1] class 1 carbametallaboranes), there are remarkably few examples of compounds in which the metal and (closo) carbaborane cage are linked by a $2 \mathrm{c}-2 \mathrm{e}$ bond (class 3 carbametallaboranes). A review of the literature [2] revealed that class 3 transition metal carbametallaboranes are only known for d^{6} or greater metal configurations, with metal-ligand bonding predominantly via a cage carbon atom. Many of these compounds are, moreover, relatively unstable via cleavage of the metal-carbon bond, e.g., 1-Ph-2-\{ $\left.\mathrm{CpFe}(\mathrm{CO})_{2}\right\}-1,2-$ closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ is stable in aromatic solvents [3] but degrades to $\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2}$ and 1- $\mathrm{Ph}-1,2-$ closo$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ [4].

In 1970, Mitchell and Stone [5] reported class 3 carba-auraboranes of unusual stability, and suggested that this could be related to "the ... electron-withdrawing influence of the carb(ab)orane group." This implies that the $\left\{\mathrm{Ph}_{3} \mathrm{PAu}\right\}$ fragment to

[^0]which the carbaborane is bonded acts as an electron donating moiety, in contrast to current ideas [6] about the bonding capabilities of such a unit, the (occupied) valence d orbitals of which are low-lying.

In this paper, we report the synthesis and characterization of a wide range of class 3 phosphine and arsine gold carbaborane compounds, and present the results of spectroscopic, crystallographic, and theoretical studies which collectively suggest that an alternative description of a closo-carbaborane ligand, namely as an effective σ-donor, is more appropriate.

Experimental

Syntheses

All syntheses were carried out under dry, oxygen-free nitrogen by standard Schlenk line techniques, with some subsequent manipulations in the air. Unless otherwise stated, all solvents were dried and distilled under nitrogen, and then degassed just before use. NMR spectra (Table 1) were recorded at room temperature from CDCl_{3} solutions on JEOL FX90Q ($\left.{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ and Bruker WP200SY $\left({ }^{11} \mathrm{~B}\right.$ and $\left.{ }^{1} \mathrm{H}\right)$ spectrometers. Chemical shifts are quoted relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ $\left({ }^{31} \mathrm{P}\right), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B}\right)$ and $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right)$. IR spectra were obtained as KBr pellets on a Perkin-Elmer 598 spectrophotometer. Microanalyses (Table 1) were performed by the departmental service. The starting materials $\mathrm{PR}_{3} \mathrm{AuCl}$ [7], $\mathrm{AsPh}_{3} \mathrm{AuCl}[7], 1-\mathrm{Ph}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ [8] and 1- $\mathrm{CH}_{2} \mathrm{OCH}_{3}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ [9] were prepared as previously described or by modified versions thereof. $\mathrm{AsPh}_{3} \mathrm{AuMe}$ (3) was synthesized (yield 52%) by an analogous procedure to that previously reported for $\mathrm{PPh}_{3} \mathrm{AuMe}$ [10].

Synthesis of $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-2-\left\{\mathrm{PPh}_{3} \mathrm{Au}\right\}-1,2-\mathrm{closoC}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (1a). To a stirred solution of $0.100 \mathrm{~g}(0.53 \mathrm{mmol})$ of 1- $\mathrm{CH}_{2} \mathrm{OCH}_{3}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ in sodium-dried diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added dropwise $0.45 \mathrm{~cm}^{3}$ of a 1.4 M solution of LiMe in diethyl ether (0.63 mmol). The resulting solution was allowed to warm to room temperature and then added dropwise to a stirred suspension of 0.263 g (0.53 mmol) of $\mathrm{PPh}_{3} \mathrm{AuCl}$ in diethyl ether ($15 \mathrm{~cm}^{3}$). The solution became pale orange and most of the solid dissolved. After stirring for 1 h the mixture was filtered and the filtrate evaporated in vacuo. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane yielded $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-2$ - $\left\{\mathrm{PPh}_{3} \mathrm{Au}\right\}-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (1a) as colourless crystals in 38% yield. IR $\nu_{\text {max }}$ at $2556(\mathrm{~B}-\mathrm{H}) \mathrm{cm}^{-1}$. Similarly were prepared colourless, crystalline $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-2-\left\{\mathrm{P}(o-\text { tol })_{3} \mathrm{Au}\right\}-1,2-$ closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\left(o-\right.$ tol $\left.=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-2\right)(1 \mathrm{~b})(37 \%)$, $\nu_{\text {max }}$ at $2575 \mathrm{~cm}^{-1}$; $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-2-\left\{\mathrm{PCy}_{3} \mathrm{Au}\right\}-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$] ($\mathrm{Cy}=$ cyclo$\mathrm{C}_{6} \mathrm{H}_{11}$) (1c) (32\%), $\nu_{\max }$ at $2565 \mathrm{~cm}^{-1} ; 1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-2-\left\{\mathrm{PEt}_{3} \mathrm{Au}\right\}-1,2$-closo$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (1d) (26\%), $\nu_{\text {max }}$ at $2555 \mathrm{~cm}^{-1}$; 1- $\mathrm{CH}_{2} \mathrm{OCH}_{3}-2-\left\{\mathrm{AsPh}_{3} \mathrm{Au}\right\}-1,2$-closo$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (1e) (31%), $\nu_{\text {max }}$ at $2580 \mathrm{~cm}^{-1} ; 1-\mathrm{Ph}-2-\left(\mathrm{PPh}_{3} \mathrm{Au}\right\}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (2a) (37%), $\nu_{\text {max }}$ at $2562 \mathrm{~cm}^{-1}$; 1-Ph- $2-\left\{\mathrm{P}(o-t o l)_{3} \mathrm{Au}\right\}-1,2-$ closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (2b) (36\%), $\nu_{\text {max }}$ at $2578 \mathrm{~cm}^{-1} ; 1-\mathrm{Ph}-2-\left\{\mathrm{PCy}_{3} \mathrm{Au}\right\}-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (2c) (31\%), $\nu_{\text {max }}$ at 2568 $\mathrm{cm}^{-1} ; 1-\mathrm{Ph}-2-\left\{\mathrm{AsPh}_{3} \mathrm{Au}\right\}-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (2e) (38%), $\nu_{\text {max }}$ at $2582 \mathrm{~cm}^{-1}$. In the case of 1d, purification of the crude product by TLC (Kieselgel $60 \mathrm{~F}_{254}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluant, pale orange band with $R_{\mathrm{f}}=0.9$) was necessary before crystallization.

Reaction of $1 e$ with PPh_{3}. To a stirred solution of $1 \mathrm{e}(0.017 \mathrm{~g}, 0.026 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at room temperature was added dropwise a solution of PPh_{3} ($0.007 \mathrm{~g}, 0.026 \mathrm{mmol}$) in the same solvent ($3 \mathrm{~cm}^{3}$). After 2 h , solvent was removed
Table 1
Microanalytical ${ }^{a}$ and NMR data

Complex	C (\%)	H (\%)	$\delta\left({ }^{1} \mathrm{H}\right)(\mathrm{ppm})$	$\delta\left({ }^{31} \mathrm{P}\right)(\mathrm{ppm})$	$\delta\left({ }^{11} \mathrm{~B}\right)(\mathrm{ppm})$
1a	40.9(40.3)	4.68(4.84)	7.56-7.32 (m, 15H, $\mathrm{C}_{5} \mathrm{H}_{5}$)	38.63	$-0.97(1 \mathrm{~B}),-3.97(1 \mathrm{~B}),-7.27(2 \mathrm{~B}),-9.27(6 \mathrm{~B})$
			3.89 (s, 2H, CH_{2}) $3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$		
1b	43.6(43.8)	5.27(5.23)	7.77-6.73 (m, 12H, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$)	16.56	$-1.49(1 \mathrm{~B}),-3.95(1 \mathrm{~B}),-7.35(2 \mathrm{~B}),-9.68(6 \mathrm{~B})$
			3.78 (s, 2H, CH_{2})		
			3.12 (s, 3H, OCH3)		
			2.67 (s, 9H, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$)		
1c	39.8(40.9)	7.28(7.47)	$3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$	55.60	$-1.36(1 \mathrm{~B}),-4.14(1 \mathrm{~B}),-7.28(2 \mathrm{~B}),-9.71(6 \mathrm{~B})$
			$\begin{aligned} & 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \\ & 2.14-1.21\left(\mathrm{~m}, 33 \mathrm{H}, \mathrm{C}_{6} H_{11}\right) \end{aligned}$		
1d	23.2(23.9)	5.95(6.02)	3.82 (s,2H, $\mathrm{CH}_{2} \mathrm{O}$)	37.20	$-1.48(1 \mathrm{~B}),-4.09(1 \mathrm{~B}),-7.20(2 \mathrm{~B}),-9.73(6 \mathrm{~B})$
			3.32 (s, 3H, OCH3)		
			1.73 (t, $22 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$)		
			$1.22\left(\mathrm{q}, 22 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$		
1e	38.3(38.6)	4.38(4.71)	7.56-7.46 (m, 15H, $\mathrm{C}_{6} \mathrm{H}_{5}$)	-	$-1.34(1 \mathrm{~B}),-4.01(1 \mathrm{~B}),-7.28(2 \mathrm{~B})-8.78(6 \mathrm{~B})$
			3.93 (s, 2H, CH2)		
			3.31 (s, 3H, CH_{3})		
2a	46.0(46.3)	4.46(4.60)	7.86-7.10 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$)	38.63	$-0.42(1 \mathrm{~B}),-3.45(1 \mathrm{~B}),-6.99(4 \mathrm{~B}),-8.34(4 \mathrm{~B})$
2b	48.3(47.0)	5.04(5.06)	7.72-6.62 (m, 17H, aryl)	16.56	$-0.63(1 \mathrm{~B}),-3.24(1 \mathrm{~B}),-6.92(4 \mathrm{~B}),-8.43(4 \mathrm{~B})$
			2.35 (s, 9H, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$)		
2c	44.8(44.4)	6.95(6.89)	7.81-7.15 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$)	55.19	$-0.60(1 \mathrm{~B}),-3.54(1 \mathrm{~B})-6.98(4 \mathrm{~B}),-8.45(4 \mathrm{~B})$
			1.84-1.15 (m, 33H, $\mathrm{C}_{6} \mathrm{H}_{11}$)		
2e	43.2(43.3)	4.19(4.34)	7.90-7.12 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$)	-	$-0.27(1 \mathrm{~B}),-3.43(1 \mathrm{~B}),-6.95(4 \mathrm{~B}),-8.55(4 \mathrm{~B})$
3	44.2(44.0)	3.76(3.50)	$\begin{aligned} & 7.46-7.38\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} H_{5}\right) \\ & 0.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{3}\right) \end{aligned}$	-	-

[^1]in vacuo and $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ added. The resultant solid and solution were separated by filtration. Microanaiysis of the solid was consistent with the formulation $\mathrm{C}_{18} \mathrm{H}_{15}$ As. Solvent was removed from the filtrate and the resultant pale yellow solid shown to be 1a by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

X-Ray crystallography

All measurements were made on an Enraf-Nonius CAD4 diffractometer operating with graphite-monochromated Mo- K_{α} X-radiation, $\lambda(\mathrm{bar})=0.71069 \AA$, and equipped with a ULT-1 low temperature device (nitrogen cooling stream). Suitable

Table 2
Crystallographic data and details of data collection and structure solution and refinement

	Compound 1e	Compound 3
Formula	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~B}_{10}$ AsAuO $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{AsAu}$
M	775.40	518.24
Crystal system	Triclinic	Monoclinic
Space group	$P \overline{1}$	$P 21_{1} /{ }^{\text {c }}$
$a(\AA)$	9.6664(22)	$9.0168(24)$
b (A$)$	12.706(8)	$11.3808(21)$
$c(\AA)$	12.787(4)	17.413(4)
$\alpha\left({ }^{\circ}\right)$	93.78(4)	90
$\left.\beta{ }^{(}\right)$	97.282(23)	104.563(18)
$\gamma\left({ }^{\circ}\right)$	102.32(4)	90
$V\left(\AA^{3}\right)$	1514.8(12)	1729.4(7)
Z	2	4
$D\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.700	1.990
$\mu\left(\mathrm{cm}^{-1}\right)$	61.24	103.78
$F(000)(\mathrm{e})$	748	976
θ range (setting) ${ }^{\circ}$)	9-15	12-14
θ range (data collection) $\left(^{\circ}\right.$)	1-25	1-25
T	$185+1 \mathrm{~K}$	$291 \pm 1 \mathrm{~K}$
h range	$0 \rightarrow 11$	$0 \rightarrow 10$
k range	$-15 \rightarrow 15$	$0 \rightarrow 13$
l range	$-15 \rightarrow 15$	$-20 \rightarrow 20$
ω scan speeds (${ }^{\circ} \min ^{-1}$)	0.92-2.35	0.92-2.35
Data measured	5713	3463
Data observed	4814	2459
Criterion for observed	$F \geq 2.0 \sigma(F)$	$\bar{F} \geq 2.0 \sigma(F)$
Data collection time (h)	120	76
H atom thermal parameter (\AA^{2})	$\begin{aligned} & 0.093(9) \text { (non-cage) } \\ & 0.083(11) \text { (cage) } \end{aligned}$	0.102(10)
g	0.001280	0.000260
\boldsymbol{R}	0.0524	0.0462
$\boldsymbol{R}_{\text {w }}$	0.0670	0.0431
S	1.132	1.165
No. variables	374	191
Maximum shift/e.s.d.	$0.50{ }^{\text {a }}$	0.01
Maximum residue (e \AA^{-3})	$2.29{ }^{\text {b }}$	0.92
Minimum residue ($\mathrm{E}^{\AA^{-3}}$)	-3.32	-1.06

[^2]crystals of both 1e and 3 were obtained by slow diffusion of hexane into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at $-30^{\circ} \mathrm{C}$. Unit cell parameters and orientation matrices were obtained by the least-squares refinement of the setting angles of 25 strong, high angle reflections. Data collection was by $\omega-2 \theta$ scans in 96 steps (ω scan width $0.8+$ $0.34 \tan \theta$) at variable scan speeds. For 1e, neither significant crystal decay nor movement was noted, but the crystal of 3 suffered a 30% decay in the average net intensity of two periodically remeasured check reflections and data were scaled accordingly. Data were corrected for Lorentz and polarization effects cadabs [11],

Table 3
Coordinates of refined atoms in 1 e

	x	y	z	
Au	$0.17560(3)$	$0.48470(2)$	$0.26374(2)$	$0.0398(2)$
As	$0.00550(9)$	$0.33080(6)$	$0.17702(6)$	$0.0385(4)$
C(11)	$0.0461(9)$	$0.2846(6)$	$0.0385(6)$	$0.041(4)$
C(12)	$0.1316(10)$	$0.3605(8)$	$-0.0130(8)$	$0.055(5)$
C(13)	$0.1684(10)$	$0.3294(10)$	$-0.1087(8)$	$0.065(6)$
C(14)	$0.1256(11)$	$0.2250(9)$	$-0.1521(8)$	$0.069(7)$
C(15)	$0.0351(14)$	$0.1484(9)$	$-0.0993(8)$	$0.071(7)$
C(16)	$-0.0024(11)$	$0.1810(8)$	$-0.0047(8)$	$0.059(6)$
C(21)	$-0.0113(9)$	$0.2033(6)$	$0.2518(6)$	$0.039(4)$
C(22)	$0.1115(11)$	$0.1785(7)$	$0.2984(9)$	$0.062(6)$
C(23)	$0.1053(13)$	$0.0872(8)$	$0.3500(9)$	$0.076(8)$
C(24)	$-0.0281(14)$	$0.0208(8)$	$0.3588(8)$	$0.067(7)$
C(25)	$-0.1474(12)$	$0.0452(7)$	$0.3122(8)$	$0.063(6)$
C(26)	$-0.1404(10)$	$0.1367(7)$	$0.2595(8)$	$0.054(5)$
C(31)	$-0.1877(10)$	$0.3523(6)$	$0.1540(6)$	$0.045(5)$
C(32)	$-0.2460(12)$	$0.3781(8)$	$0.2437(7)$	$0.067(6)$
C(33)	$-0.3845(12)$	$0.3975(9)$	$0.2299(7)$	$0.073(7)$
C(34)	$-0.4627(13)$	$0.3891(9)$	$0.1300(8)$	$0.072(7)$
C(35)	$-0.4044(12)$	$0.3613(9)$	$0.0470(8)$	$0.069(7)$
C(36)	$-0.2651(10)$	$0.3436(8)$	$0.0561(6)$	$0.055(5)$
C(101)	$0.1062(10)$	$0.7069(8)$	$0.3936(10)$	$0.060(6)$
O	$0.0635(7)$	$0.6378(6)$	$0.4696(6)$	$0.070(5)$
C(102)	$-0.0811(11)$	$0.6231(9)$	$0.4756(9)$	$0.072(7)$
C(1)	$0.2632(8)$	$0.7214(6)$	$0.3892(6)$	$0.037(4)$
C(2)	$0.3207(9)$	$0.6207(5)$	$0.3312(6)$	$0.036(4)$
B(3)	$0.3576(9)$	$0.6467(7)$	$0.4665(7)$	$0.035(4)$
B(6)	$0.3177(10)$	$0.7371(7)$	$0.2689(7)$	$0.040(5)$
B(7)	$0.4868(10)$	$0.6210(7)$	$0.3923(8)$	$0.042(5)$
B(8)	$0.5326(11)$	$0.7273(9)$	$0.4964(8)$	$0.050(6)$
B(12)	$0.5973(11)$	$0.7452(9)$	$0.3726(9)$	$0.054(6)$
B(11)	$0.4668(10)$	$0.6751(7)$	$0.2729(7)$	$0.042(5)$
B(5)	$0.3609(11)$	$0.8439(7)$	$0.3688(9)$	$0.052(6)$
B(9)	$0.5350(12)$	$0.8487(9)$	$0.4380(10)$	$0.058(7)$
B(10)	$0.4941(11)$	$0.8164(8)$	$0.2952(8)$	$0.048(6)$
B(4)	$0.3859(12)$	$0.7905(8)$	$0.4918(8)$	$0.048(6)$
C1(1)	$-0.566(3)$	$0.0963(18)$	$0.2004(19)$	
C1(2)	$-0.674(6)$	$0.054(4)$	$0.034(5)$	
C1(3)	$-0.610(8)$	$0.000(6)$	$0.056(8)$	
C1(4)	$-0.531(10)$	$-0.034(5)$	$-0.057(7)$	
CX(1)	$-0.816(13)$	$-0.042(8)$	$0.164(9)$	
CX(2)	$-0.884(18)$	$0.168(13)$	$-0.033)$	

Table 4
Coordinates of refined atoms for 3

	x	y	z	
Au(1)	$0.31219(5)$	$0.04654(3)$	$0.10622(2)$	$0.0493(2)$
As(1)	$0.40587(11)$	$0.22500(8)$	$0.06482(6)$	$0.0459(6)$
$\mathrm{C}(11)$	$0.3325(11)$	$0.2634(8)$	$-0.0452(6)$	$0.050(6)$
$\mathrm{C}(12)$	$0.4180(12)$	$0.3267(9)$	$-0.0871(6)$	$0.056(7)$
$\mathrm{C}(13)$	$0.3575(12)$	$0.3616(9)$	$-0.1638(6)$	$0.058(7)$
$\mathrm{C}(14)$	$0.2093(14)$	$0.3351(9)$	$-0.2009(6)$	$0.067(8)$
$\mathrm{C}(15)$	$0.1214(12)$	$0.2688(11)$	$-0.1617(7)$	$0.069(8)$
$\mathrm{C}(16)$	$0.1828(11)$	$0.2313(9)$	$-0.0835(6)$	$0.055(7)$
$\mathrm{C}(21)$	$0.3455(10)$	$0.3624(8)$	$0.1166(6)$	$0.048(6)$
$\mathrm{C}(22)$	$0.2629(13)$	$0.4520(9)$	$0.0727(7)$	$0.063(7)$
$\mathrm{C}(23)$	$0.2158(14)$	$0.5438(10)$	$0.1172(9)$	$0.077(9)$
$\mathrm{C}(24)$	$0.2561(15)$	$0.5435(12)$	$0.1972(8)$	$0.077(9)$
$\mathrm{C}(25)$	$0.3360(14)$	$0.4576(12)$	$0.2383(7)$	$0.074(8)$
$\mathrm{C}(26)$	$0.3850(12)$	$0.3654(10)$	$0.1986(7)$	$0.062(7)$
$\mathrm{C}(31)$	$0.6260(10)$	$0.2347(9)$	$0.0857(6)$	$0.049(6)$
$\mathrm{C}(32)$	$0.7063(12)$	$0.1340(11)$	$0.0755(7)$	$0.068(8)$
$\mathrm{C}(33)$	$0.8640(14)$	$0.1410(13)$	$0.0857(8)$	$0.083(9)$
$\mathrm{C}(34)$	$0.9416(14)$	$0.2434(14)$	$0.1102(8)$	$0.088(10)$
$\mathrm{C}(35)$	$0.8605(13)$	$0.3418(13)$	$0.1198(8)$	$0.081(9)$
$\mathrm{C}(36)$	$0.7039(12)$	$0.3381(10)$	$0.1086(7)$	$0.072(8)$
$\mathrm{C}(1)$	$0.2266(10)$	$-0.1104(7)$	$0.1453(5)$	$0.042(5)$

and the structures solved by Patterson syntheses (Au) and iterative full-matrix least-squares refinement $/ \Delta F$ syntheses (As, C, B, O atoms) (shelx76 [12]). Empirical absorption corrections (Difabs [13]) were applied after isotropic convergence. Phenyl, methyl and methylene H atoms were placed in idealized positions. For 1e, cage H atoms were positionally refined subject to a common $\mathrm{B}-\mathrm{H}$ distance of $1.20(5) \AA$. In the final stages, all non- H atoms (except those of the solvate of 1e) were refined with anisotropic thermal parameters, and H atoms with group isotropic parameters (cage and non-cage H atoms treated separately in the case of 1e). The weighting scheme $w^{-1}=\sigma^{2}(F)+g F^{2}$ was applied. Details of crystal data and structure solution and refinement are given in Table 2. Atomic coordinates appear in Tables 3 and 4, respectively. Computer programs used in addition to those referenced above were calc [14] and shelxtl [15]. Atomic scattering factors were from International Tables [16] or inlaid in shelx76. Anisotropic thermal parameters, calculated H atom positions and tables of $F_{\mathrm{o}} / F_{\mathrm{c}}$-values are available from AJW.

Molecular orbital calculations

All calculations were carried out by a locally modified version of icons [17] using the weighted $H_{i j}$ formula [18]. The model compounds $\mathrm{AsH}_{3} \mathrm{AuCH}_{3}$ (I) and 1 - $\left.\mathrm{AsH}_{3} \mathrm{Au}\right\}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{18} \mathrm{H}_{11}$ (II) were constructed with $\mathrm{As}-\mathrm{H}=1.50 \AA$, As$\mathrm{Au}=2.38 \AA, \mathrm{Au}-\mathrm{C}=2.08 \AA, \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{B}=\mathrm{B}-\mathrm{B}=1.75 \AA, \mathrm{~B}-\mathrm{H}=\mathrm{C}-\mathrm{H}_{\mathrm{cagc}}=1.20$ \AA and $\mathrm{C}-\mathrm{H}_{\text {methyl }}=1.08 \AA$, and with linear Au geometries and tetrahedral angles at $\mathrm{C}_{\text {methyl }}$. The As-Au-C sequences were set to lie along the z-axis, and in II, $\mathrm{C}(1)$ was set to lie in the $y z$ plane. $H_{i i}$ values and orbital exponents for As, C, B and H

Table 5
Parameters ${ }^{a}$ used in EHMO calculations

Orbital	$H_{i i}(\mathrm{eV})$	ζ_{1}	ζ_{2}	c_{1}	c_{2}
$\mathrm{H}(1 s)$	-13.30	1.30			
$\mathrm{~B}(2 s)$	-15.40	1.30			
$\mathrm{~B}(2 p)$	-8.68	1.30			
$\mathrm{C}(2 s)$	-20.90	1.625			
$\mathrm{C}(2 p)$	-11.10	1.625		0.53558	
$\mathrm{As}(4 s)$	-16.22	2.23			
$\mathrm{As}(4 p)$	-12.16	1.89			
$\mathrm{Au}(5 d)$	-15.07	6.163	2.794		
$\mathrm{Au}(6 s)$	-10.92	2.602			
$\mathrm{Au}(6 p)$	-5.55	2.584			

${ }^{a}$ Metal d orbitals described by double-zeta expansion.
were those inlaid in icons. $H_{i i}$ values for Au were optimized for II at the highest level of charge iteration available, $H_{i i}=-\operatorname{VSIE}(Q)$, using nine $\operatorname{VSIE}(Q)$ functions for gold (Table 5).

Results and discussion

By use of the method initially communicated by Mitchell and Stone [5], we have found that reaction between equimolar amounts of $\mathrm{PR}_{3} \mathrm{AuCl}$ and $\mathrm{Li}\left[1-\mathrm{R}^{\prime}-1,2-\right.$ closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$] (prepared in situ from treatment of the appropriate 1,2-closocarbaborane [19,20] with MeLi) in $\mathrm{Et}_{2} \mathrm{O}$ affords the class 3 [1] phosphine gold carbaboranes 1-R'-2-PR ${ }_{3} \mathrm{Au}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (1a-1d, 2a-2c) in moderate yields (for definition of individual compounds see Experimental section).

Compounds 1 and 2 are all colourless crystalline materials readily soluble in $\mathrm{Et}_{2} \mathrm{O}$, THF, CHCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. They are indefinitely stable in the atmosphere and as the solutions prepared above. All compounds gave satisfactory microanalytical (C and H) data.
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}-1 \mathbf{d}$ and $\mathbf{2 a - 2 c}$ showed resonances due to R and R^{\prime} groups in the expected ratios, and confirmed the disappearance of broad peaks of integral 1 at $\delta 3.95 \mathrm{ppm}\left(\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$ and $\delta 4.00 \mathrm{ppm}\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right)$ due to $\mathbf{C H}(2)$ of the parent closo-carbaboranes. For compounds 1a-1d, it is of note that the resonances due to the CH_{2} functions of the ether subsituent shift ca. 0.1 ppm to high frequency relative to that in $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ [9], whilst the resonances due to the methyl part of the ether group show a smaller shift (ca. $0.05 \mathrm{ppm})$ in the opposite direction. ${ }^{31} \mathrm{P}-\left({ }^{1} \mathrm{H}\right)$ NMR spectra of $1 \mathrm{a}-1 \mathrm{~d}$ and $\mathbf{2 a - 2 c}$ all show the expected singlet resonances, the chemical shifts of which were found to lie between 1 and 8 ppm to higher frequency than those of the appropriate $\mathrm{PR}_{3} \mathrm{AuCl}$ species and between 6 and 28 ppm to lower frequency of those of the appropriate $\mathrm{PR}_{3} \mathrm{AuCH}_{3}$ species [1,21]. ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the gold carbaboranes all show two peaks of integral 1 at highest frequency $[B(9)$ and $B(12)]$ but, at the field strength used, the spectra do not totally distinguish between the four pairs of low frequency symmetry-equivalent boron atoms, compounds 1 displaying a triple coincidence at lowest frequency and compounds 2 two double coincidences. ${ }^{11} \mathrm{~B}$ spectra show that all signals experience doublet coupling, with ${ }^{1} J(\mathrm{BH})$

Fig. 1. Perspective view of compound 1e. Cage H atoms carry the same number as the B to which they are bound.
in the range $140-176 \mathrm{~Hz}$. In $1-\mathrm{CH}_{2} \mathrm{OCH}_{3}-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$, the range of ${ }^{11} \mathrm{~B}$ chemical shifts in CDCl_{3} is -2.47 to -12.45 ppm [9], and in $1-\mathrm{Ph}-1,2$-closo$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$, it is -1.30 to $\mathbf{- 1 2 . 0 1} \mathrm{ppm}$ [4]. Clearly, when $\mathrm{H}(2)$ in these carbaboranes is replaced by a $\left(\mathrm{PR}_{3} \mathrm{Au}\right)$ moiety all ${ }^{11} \mathrm{~B}$ chemical shifts move to high frequency, especially those least far from the carbaborane cage carbon atoms. This suggests that the carbaborane cages in $\mathbf{1}$ and $\mathbf{2}$ could be functioning as moderately efficient electron donors to the metal fragment (vide infra).

The AsPh_{3} derivatives 1 e and 2 e were prepared similarly from $\mathrm{AsPh}_{3} \mathrm{AuCl}$ and were characterized by microanalysis and ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopies. The AsPh_{3} ligand in $1 \mathbf{1 e}$ (and presumably also in 2e) is easily replaced by PPh_{3} to afford 1a (2a) as identified by $\left.{ }^{31} \mathbf{P}-{ }^{1}{ }^{1} \mathrm{H}\right)$ NMR spectroscopy.

Both 1a and 1e afford high quality crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:4), and these were shown to be isomorphous by unit cell determinations. However, crystals of 1a became opaque after ca. 20 h at room temperature, presumably through solvate loss, so intensity data were collected from $1 \mathbf{e}$ at low temperature.

Figure 1 shows a perspective view of a single molecule of 1 e and demonstrates the atomic numbering scheme used; Table 6 details interatomic distances and interbond angles determined. Compound le co-crystallizes with one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate but the latter is disordered in the lattice and relatively poorly defined. In le, the $\left\{1,2\right.$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10}$ \} cage has the expected icosahedral geometry, with $\mathrm{C}(1)-\mathrm{C}(2)=1.667(11) \AA$, longer (although not significantly so) than that in the parent species $1-\mathrm{CH}, \mathrm{OCH}_{3}-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}[9]$. The phenyl rings adopt a

Table 6
Interatomic distances (\AA) and interbond angles (deg) in $1 e$

Au -As	$2.3740(8)$	C(1)-B(6)	1.698(12)
Au -C(2)	2.039(8)	C(1)-B(5)	1.695(13)
As-C(11)	1.943(8)	C(1)-B(4)	1.705(13)
As-C(21)	1.922(8)	$C(2)-B(3)$	1.717(11)
As-C(31)	$1.933(8)$	C(2)-P(6)	1.730(12)
C(11)-C(12)	1.389(13)	$C(2)-B(7)$	1.693(12)
C(11)-C(16)	1.354(13)	$C(2)-B(11)$	1.716(12)
C(12)-C(13)	1.373(14)	$\mathrm{B}(3)-\mathrm{B}(7)$	1.732(13)
C(13)-C(14)	1.360(15)	$B(3)-B(8)$	1.760(14)
C(14)-C(15)	1.429(16)	$B(3)-B(4)$	1.789 (13)
C(15)-C(16)	1.369(15)	$B(6)-B(11)$	1.781(13)
C(21)-C(22)	1.367(13)	$B(6)-B(5)$	1.744(14)
C(21)-C(26)	1.369(12)	$B(6)-B(10)$	1.764(14)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.366(16)	$\mathrm{B}(7)-\mathrm{B}(8)$	1.776(14)
C(23)-C(24)	1.405(16)	$\mathrm{B}(7)-\mathrm{B}(12)$	$1.760(15)$
C (24)-C(25)	1.336(15)	$B(7)-B(11)$	1.720 (13)
$\mathrm{C}(25)-\mathrm{C}(26)$	1.375(14)	$B(8)-B(12)$	1.785(15)
C(31)-C(32)	1.391(13)	$B(8)-B(9)$	1.755(16)
C(31)-C(36)	1.359(12)	$B(8)-B(4)$	1.769 (15)
C(32)-C(33)	1.404(15)	$B(12)-\mathrm{B}(11)$	1.724(14)
C(33)-C(34)	1.385(16)	$B(12)-B(9)$	1.764(16)
C(34)-C(35)	1.325(16)	$B(12)-B(10)$	1.745(15)
C(35)-C(36)	1.404(14)	$B(11)-B(10)$	1.757(14)
C(101)-O	1.394(13)	$\mathrm{B}(5)-\mathrm{B}(9)$	$1.786(16)$
C(101)-C(1)	1.498(13)	$B(5)-B(10)$	1.766 (15)
O-C(102)	1.384(14)	$B(5)-B(4)$	1.762(15)
C(1)-C(2)	1.667(11)	$B(9)-B(10)$	1.820 (16)
$\mathrm{C}(1)-\mathrm{B}(3)$	1.725(11)	$B(9)-B(4)$	1.721(16)
As-Au-C(2)	177.05(21)	$\mathrm{B}(7)-\mathrm{C}(2)-\mathrm{B}(11)$	60.6(5)
Au-As-C(11)	113.51(24)	$C(1)-B(3)-C(2)$	58.0(4)
Au-As-C(21)	113.87(23)	$\mathrm{C}(1)-\mathrm{B}(3)-\mathrm{B}(4)$	58.0(5)
Au-As-C(31)	113.61(25)	$C(2)-B(3)-B(7)$	58.8(5)
C(11)-As-C(21)	104.4(3)	$B(7)-B(3)-B(8)$	61.1(5)
C(11)-As-C(31)	105.6(3)	$B(8)-B(3)-B(4)$	59.8(6)
C(21)-As-C(31)	103.8(3)	$C(1)-B(4)-C(2)$	58.2(5)
As-C(11)-C(12)	117.7(6)	$C(1)-B(6)-B(5)$	59.0(5)
As-C(11)-C(16)	121.3(7)	$C(2)-B(6)-B(11)$	58.5(5)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	121.0(8)	$B(11)-B(6)-B(10)$	59.4(5)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.3(9)	$B(5)-B(6)-B(10)$	60.5(6)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.0(10)	$C(2)-B(7)-B(3)$	60.2(5)
C(13)-C(14)-C(15)	119.0(10)	$C(2)-B(7)-B(11)$	60.4(5)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.3(10)	$B(3)-B(7)-B(8)$	60.2(5)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	120.4(10)	$\mathrm{B}(8)-\mathrm{B}(7)-\mathrm{B}(12)$	60.7(6)
As-C(21)-C(22)	118.1(6)	$B(12)-B(7)-B(11)$	59.4(6)
As-C(21)-C(26)	122.8(6)	$\mathrm{B}(3)-\mathrm{B}(8)-\mathrm{B}(7)$	58.6(5)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	119.2(8)	$B(3)-B(8)-B(4)$	60.9(6)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.3(9)	$B(7)-B(8)-B(12)$	59.2(6)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119.8(10)	$\mathrm{B}(12)-\mathrm{B}(8)-\mathrm{B}(9)$	59.8(6)
C(23)-C(24)-C(25)	119.4(10)	$\mathrm{B}(9)-\mathrm{B}(8)-\mathrm{B}(4)$	58.5(6)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	120.4(10)	$\cdot \mathrm{B}(7)-\mathrm{B}(12)-\mathrm{B}(8)$	60.1(6)
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	120.9(9)	$B(7)-B(12)-B(11)$	59.2(6)
As-C(31)-C(32)	116.6(7)	$B(8)-B(12)-B(9)$	59.3(6)
As-C(31)-C(36)	123.0(7)	$B(11)-B(12)-B(10)$	60.8(6)
C(32)-C(31)-C(36)	120.4(8)	$B(9)-B(12)-B(10)$	62.5(6)

Table 6 (continued)

$C(31)-C(32)-C(33)$	$118.2(9)$	$C(2)-B(11)-B(6)$	$59.2(5)$
$C(32)-C(33)-C(34)$	$121.2(10)$	$C(2)-B(11)-B(7)$	$59.0(5)$
$C(33)-C(34)-C(35)$	$118.5(11)$	$B(6)-B(11)-B(10)$	$59.8(5)$
$C(34)-C(35)-C(36)$	$122.6(10)$	$B(7)-B(11)-B(12)$	$61.5(6)$
$C(31)-C(36)-C(35)$	$119.0(9)$	$B(12)-B(11)-B(10)$	$60.2(6)$
$O-C(101)-C(1)$	$110.9(8)$	$C(1)-B(5)-B(6)$	$59.2(5)$
$C(101)-O-C(102)$	$112.2(8)$	$C(1)-B(5)-B(4)$	$59.1(5)$
$C(101)-C(1)-C(2)$	$118.6(7)$	$B(6)-B(5)-B(10)$	$60.3(6)$
$C(101)-C(1)-B(3)$	$118.4(7)$	$B(9)-B(5)-B(10)$	$61.6(6)$
$C(101)-C(1)-B(6)$	$117.1(7)$	$B(9)-B(5)-B(4)$	$58.0(6)$
$C(101)-C(1)-B(5)$	$119.7(7)$	$B(8)-B(9)-B(12)$	$61.0(6)$
$C(101)-C(1)-B(4)$	$120.6(7)$	$B(8)-B(9)-B(4)$	$61.2(6)$
$B(3)-C(1)-C(2)$	$60.8(5)$	$B(12)-B(9)-B(10)$	$58.3(6)$
$B(3)-C(1)-B(4)$	$62.9(5)$	$B(5)-B(9)-B(10)$	$58.7(6)$
$B(6)-C(1)-C(2)$	$61.9(5)$	$B(5)-B(9)-B(4)$	$60.3(6)$
$B(6)-C(1)-B(5)$	$61.9(5)$	$B(6)-B(10)-B(11)$	$60.8(5)$
$B(5)-C(1)-B(4)$	$62.4(6)$	$B(6)-B(10)-B(5)$	$59.2(6)$
$A u-C(2)-C(1)$	$119.3(5)$	$B(12)-B(10)-B(11)$	$59.0(6)$
$A u-C(2)-B(3)$	$120.4(5)$	$B(12)-B(10)-B(9)$	$59.3(6)$
$A u-C(2)-B(6)$	$16.0(5)$	$B(5)-B(10)-B(9)$	$59.7(6)$
$A u-C(2)-B(7)$	$124.1(5)$	$C(1)-B(4)-B(3)$	$59.1(5)$
$A u-C(2)-B(11)$	$121.5(5)$	$C(1)-B(4)-B(5)$	$58.5(5)$
$B(3)-C(2)-C(1)$	$61.3(5)$	$B(3)-B(4)-B(8)$	$59.3(5)$
$B(3)-C(2)-B(7)$	$61.1(5)$	$B(8)-B(4)-B(9)$	$60.4(6)$
$B(6)-C(2)-C(1)$	$59.9(5)$	$B(5)-B(4)-B(9)$	$61.7(6)$
$B(6)-C(2)-B(11)$	$62.3(5)$		

propellar-like arrangement at the As atom with twist angles about the As-C(11), As-C(21) and As-C(31) bonds of 24,43 and 60°, respectively, where 0° twist corresponds to an eclipsed $\mathrm{Au}-\mathrm{As}-\mathrm{C}-\mathrm{C}$ arrangement. The orientation of the ether substituent is defined by the $C(2)-C(1)-C(101)-O$ torsion angle of 74.9° and the $\mathrm{C}(1)-\mathrm{C}(101)-\mathrm{O}-\mathrm{C}(102)$ torsion angle of 179.8° (trans staggered), and results in the closest interligand contact being between $H(112)$ and $H(32), 2.66 \AA$. The $\mathrm{O} . . \mathrm{Au}$ distance is $3.582(7) \AA$, too long to suggest interaction. In the related, isoelectronic compound, $1-\mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}-2-\left(\mathrm{CH}_{3} \mathrm{Hg}\right)-1,2$-closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ [22], the $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}-\mathrm{O}$ torsion angle is close to 0°, and $\mathrm{Hg} \ldots \mathrm{O}$ is only $2.747(4) \AA$, both of which imply some degree of secondary bonding between the ether oxygen atom and the metal.

The $\mathrm{As}-\mathrm{Au}-\mathrm{C}(2)$ sequence is essentially linear and $\mathrm{Au}-\mathrm{As}=2.3740(8) \AA$, $\mathrm{Au}-\mathrm{C}(2)=2.039(8) \AA$. There are no published $\mathrm{Au}-\mathrm{C}_{\text {carbaborane }} \sigma$-bonded distances against which to compare the latter value, but a single bond $\mathrm{Au}-\mathrm{C}$ distance trans to AsPh_{3} could be expected to be ca. $2.1 \AA$ by consideration of the $\mathrm{Au}-\mathrm{CH}_{3}$ and $\mathrm{Au}-\mathrm{Br}$ bond lengths of 2.123 and $2.407 \AA$ in $\mathrm{PPh}_{3} \mathrm{AuMe}$ [23] and $\mathrm{PPh}_{3} \mathrm{AuBr}$ [24], respectively ($\Delta=0.28 \AA$) together with the $\mathrm{Au}-\mathrm{Br}$ bond length of $2.37 \AA$ in $\mathrm{AsPh}_{3} \mathrm{AuBr}$ [25]. On this basis, the $\mathrm{Au}-\mathrm{C}(2)$ bond length in 1e appears to be unusually short. However, it was clearly of importance to determine the length of an $\mathrm{Au}-\mathrm{C}$ single bond trurs to AsPh_{3} in a standard compound before further consideration was given to the above result, and to this end, we have synthesized $\mathrm{AsPh}_{3} \mathrm{AuMe}$ (3) by established methods [10] and determined its molecular structure.

Fig. 2. Perspective view of compound 3.

Figure 2 shows a perspective view of a single molecule of 3 and Table 7 lists interatomic distances and interbond angles determined. In 3, the disposition of the phenyl rings is again propellar-like, with twist angles of 32,57 and 37° about the As-C(11), As-C(21) and As-C(31) bonds, respectively. The Au-As distance is within $0.0060(14) \AA$ of that of 1 e , but the Au-C distance in 3 is $0.085(12) \AA$ longer than in the carbaborane compound, supporting the proposal that in 1e the Au-C sigma bond is anomalously short.

The origin of this unexpected result was investigated by analysis of the results of extended Hückel molecular orbital (EHMO) calculations on the model compounds I and II (Table 8). Comparison of the reduced overlap population matrix (ROPM) elements confirms that the Au-As bond strengths in I and II are essentially the same, and shows that the shorter $\mathrm{Au}-\mathrm{C}$ distance in 1 e relative to that in 3 is due to increased bond strength in the former compound. In II, the gold atom carries a greater negative charge ($\Delta=0.018 \mathrm{e}$), and analysis of the individual atomic orbital occupations (AOOs) shows that this increased charge lies predominantly in the $6 p_{z}$ and $6 s$ AOs.

Taken together, these results imply that the carbaborane ligand of 1 e is a better σ-donor than the methyl ligand of 3. Calculations on $\left[\mathrm{CH}_{3}\right]^{-}$and $[1,2$-closo$\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}\right]^{-}$(the latter derived from II by removal of the $\left\{\mathrm{H}_{3} \mathrm{AsAu}\right\}^{+}$fragment) confirm that this is reasonable since the highest occupied MO (HOMO) of the carbaborane ligand lies $c a .1 \mathrm{eV}$ higher than that of $\left[\mathrm{CH}_{3}\right]^{-}(-10.676 \mathrm{vs} .-11.749$ eV , respectively). This results from the fact that, whilst the HOMO of $\left[\mathrm{CH}_{3}\right]^{-}$is the expected carbon ($2 s-2 p_{z}$) hybrid orbital directed towards the 4th tetrahedral

Table 7
Interatomic distances (A) and interbond angles (deg) in 3

$\mathrm{Au}(1)-\mathrm{As}(1)$	$2.3800(11)$	$\mathrm{C}(21)-\mathrm{C}(26)$	$1.382(15)$
$\mathrm{Au}(1)-\mathrm{C}(1)$	$2.124(9)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.426(17)$
$\mathrm{As}(1)-\mathrm{C}(11)$	$1.913(10)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.349(19)$
$\mathrm{As}(1)-\mathrm{C}(21)$	$1.949(10)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.314(19)$
$\mathrm{As}(1)-\mathrm{C}(31)$	$1.929(10)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.389(17)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.389(14)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.390(15)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.396(14)$	$\mathrm{C}(31)-\mathrm{C}(36)$	$1.376(15)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.368(15)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.390(18)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.364(16)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.372(20)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.392(17)$	$\mathrm{C}(34)-\mathrm{C}(35)$	$1.370(20)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.402(16)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.376(18)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.376(15)$		
$\mathrm{As}(1)-\mathrm{Au}(1)-\mathrm{C}(1)$	$178.60(24)$	$\mathrm{As}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$117.9(8)$
$\mathrm{Au}(1)-\mathrm{As}(1)-\mathrm{C}(11)$	$116.0(3)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$121.2(10)$
$\mathrm{Au}(1)-\mathrm{As}(1)-\mathrm{C}(21)$	$112.5(3)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$115.8(10)$
$\mathrm{Au}(1)-\mathrm{As}(1)-\mathrm{C}(31)$	$114.7(3)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$121.3(12)$
$\mathrm{C}(11)-\mathrm{As}(1)-\mathrm{C}(21)$	$102.3(4)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$122.2(13)$
$\mathrm{C}(11)-\mathrm{As}(1)-\mathrm{C}(31)$	$104.8(4)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119.4(12)$
$\mathrm{C}(21)-\mathrm{As}(1)-\mathrm{C}(31)$	$105.1(4)$	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$120.1(10)$
$\mathrm{As}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$123.2(8)$	$\mathrm{As}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	$118.2(8)$
$\mathrm{As}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$117.9(7)$	$\mathrm{As}(1)-\mathrm{C}(31)-\mathrm{C}(36)$	$122.0(8)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$118.9(9)$	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	$119.8(10)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$121.7(10)$	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$119.1(11)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.1(10)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$120.9(13)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.9(11)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$119.1(13)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.5(11)$	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$121.1(12)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$118.9(10)$	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	$119.9(11)$
$\mathrm{As}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.9(8)$		

Table 8
Summary of pertinent results from EHMO calculations on I and II

	I	II	Δ (II-I)
ROPM elements			
Au-As	0.6296	0.6310	0.0014
Au-C	0.5323	0.5797	0.0474
Net atomic charge (e)			
Au	0.0009	-0.0173	-0.0182
Gold AOO (e)			
$6 s$	0.8127	0.8197	0.0070
$6 p_{x}$	0.0015	0.0065	0.0050
$6 p_{y}$	0.0015	0.0040	0.0025
$6 p_{z}$	0.3488	0.3638	0.0150
$5 d_{x^{2}-y^{2}}$	1.9999	1.9998	-0.0001
$5 d_{z^{2}}$	1.8619	1.8607	-0.0012
$5 d_{x y}$	1.9999	1.9998	-0.0001
$5 d_{x z}$	1.9865	1.9828	-0.0037
$5 d_{y z}$	1.9865	1.9802	-0.0063

position, that of $\left[1,2 \text {-closo }-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}\right]^{-}$, although localized mainly on $\mathrm{C}(2)$ (30\%) and outpointing from the closo icosahedron, has substantial boron character (total of 60%, divided more or less equally between 7 boron atoms).

Conclusions

This study has demonstrated that the stability of the gold-carbaborane σ-bond in class 3 phosphine and arsine gold carbaborane compounds is primarily due to the carbaborane acting as an efficient σ-donor, in contrast to previous (and indeed current [26]) descriptions of its ligand function. In turn, this suggests that stable class 3 carbametallaboranes could be formed with high oxidation state, low d^{n} configuration metal centres. Future contributions will report the results of studies stimulated by these conclusions.

Note added in proof

Since submission of this paper we have become aware that the related compound 1- $\mathrm{Ph}_{3} \mathrm{PAu}-1,2$-closo- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ has been structurally characterized (T.V. Baukova et al., Metallogr. Khim., 2 (1989) 1098). In this Au-C is 2.039(8) A., exactly the same as in the 1 e. This bond length is $0.085 \AA$ shorter than that in $\mathrm{Ph}_{3} \mathbf{P A u M e}$ [23], thus corroborating the conclusions reached in our studies.

Acknowledgments

We thank the SERC for support (BDR), Johnson Matthey plc for a loan of gold salts and the Callery Chemical Company for a generous gift of decaborane.

References

[^3]19 M.A. Bennett and P.A. Longstaff, Chem. Ind. (London), (1965) 846.
20 P.M. Garrett, J.C. Smart and M.F. Hawthorne, J. Am. Chem. Soc., 91 (1969) 4707.
21 A.J. Wynd, Ph.D. Thesis, University of Edinburgh, 1988.
22 A.I. Yanovskii, Yu.T. Struchkov, V.N. Kalinin, O.M. Zurlova and L.I. Zakharkin, Zh. Struct. Khim., 22 (1981) 120.
23 P.D. Gavens, J.J. Guy, J.J. Mays and G.M. Sheldrick, Acta Crystallogr., Sect. B, 33 (1977) 137.
24 P.F. Barron, L.M. Englehardt, P.C. Healy, J. Oddy and A.H. White, Aust. J. Chem., 40 (1987) 1545.
25 F.W.B. Einstein and R. Restivo, Acta Crystallogr., Sect. B, 31 (1975) 624.
26 X. Yang, C.B. Knobler and M.F. Hawthorne, Angew. Chem. Int. Ed. Engl., 30 (1991) 1507.

[^0]: Correspondence to: Dr. A.J. Welch.

[^1]: Calculated values in parentheses.

[^2]: ${ }^{a}$ Disordered solvate. ${ }^{\text {b }}$ Close to Au .

[^3]: 1 A.J. Wynd, A.J. McLennan, D. Reed and A.J. Welch, J. Chem. Soc., Dalton Trans., (1987) 2761.
 2 S. Bresodola, in R.N. Grimes (Ed.), Metal Interactions with Boron Clusters, Plenum, New York, 1982.

 3 D.A. Owen, J.C. Smart, P.M. Garrett and M.F. Hawthorne, J. Am. Chem. Soc., 93 (1971) 1362.
 4 B.D. Reid, Ph.D. Thesis, University of Edinburgh, 1992.
 5 C.M. Mitchell and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1970) 1263.
 6 D.G. Evans and D.M.P. Mingos, J. Organometal. Chem., 232 (1982) 171.
 7 M.I. Bruce, B.K. Nicholson and O. Bin Shawkataly, Inorg. Synth., 26 (1989) 324.
 8 T.L. Heying, J.W. Ager, Jr., S.L. Clark, D.J. Mangold, R.L. Goldstein, M. Hillman, R.J. Polak and J.W. Szymanski, Inorg. Chem., 2 (1963) 1089.

 9 K.F. Shaw and A.J. Welch, Polyhedron, 11 (1992) 157.
 10 H. Schmidbaur, T. Pollock, R. Herr, F.E. Wagner, R. Bau, J. Riede and G. Muller, Organometallics, 5 (1986) 566.
 11 R.O. Gould and D.E. Smith, Cadars, University of Edinburgh, 1986.
 12 G.M. Sheldrick, shelx76, University of Cambridge, 1976.
 13 N.G. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
 14 R.O. Gould and P. Taylor, calc, University of Edinburgh, 1986.
 15 G.M. Sheldrick, shelxtL, University of Göttingen, 1985.
 16 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, Vol. 4, 1974, p. 99.
 17 J. Howell, A. Rossi, D. Wallace, K. Haraki and R. Hoffmann, Icons, Quantum Chemistry Program Exchange, University of Indiana, no. 344.
 18 J.H. Ammeter, H.-B. Burgi, J.C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 100 (1982) 3686.

